
Performance Evaluation of
OPC-based I/O of a Dynamic Process Simulator

Jyrki Peltoniemi, Tommi Karhela, Matti Paljakka
VTT Automation, Technical Research Centre of Finland

P.O.Box 1301, 02044 VTT, Finland
email: Jyrki.Peltoniemi@vtt.fi

Keywords: OPC, Performance evaluation, Process
control, Automation design

ABSTRACT
As the use of dynamic process simulation in industry

has increased, a need has emerged for an easy way to
configure reliable and powerful data exchange between
simulation applications and distributed control systems
(DCS's).

A system where the control applications and man-
machine interfaces of the real DCS are connected to a
simulation model of the process, can be used for building,
tuning and testing the control system implementation, and
for training the operators, independently from the plant
hardware.

OPC (OLE for Process Control) is a set of component
specifications widely used in the automation domain for
software application interoperability. OPC Data Access
interfaces have been used e.g. for connecting DCS
applications of multiple vendors to simulation models.

This paper discusses architecture and design issues that
affect the performance of the OPC data exchange in
applications involving simulation. The performance test
results of an OPC server designed according to the
guidelines given show that OPC-based communication can
offer sufficient data transfer capacity for most dynamic
process simulation purposes.

INTRODUCTION
Dynamic process simulation has long been used in

automation design and testing. For these purposes, it is often
desirable to connect the simulation model to control
application in a real DCS. If both systems support OPC data
access specifications, the connection can be made using this
technique. The concept has already been used for automation
testing and for operator training. [1,2] The OPC-based
connection has proved to be an easy-to-configure tool, but it
lacks the ability to manage larger scale use. For instance, the
transfer capacity of OPC servers has been too small for
transferring a set of items comprising several thousands to
tens of thousands values a second.

The aim of this paper is to discuss the features that
affect the performance of OPC data access based
communication. The practical work has centered on the
dynamic process simulator Apros (Advanced PROcess
Simulator). Product has been developed by Technical
Research Centre of Finland (VTT) and Fortum, and is
available for modeling of combustion power plants, nuclear
power plants and pulp and paper mills.

The motivation for developing OPC was to find an easy
way to communicate between numerous data sources in the
field of automation. The costs of integrating equipment from
different vendors can be significant. A considerable amount
of engineering time may also be required in writing drivers
for a typical supervisory-control software project. [3]

OPC provides a plug-and-play software technology for
automation- and process control industries. It has rapidly
attained worldwide de-facto standard status. One reason for
this is that the OPC specification is built on the existing,
widely used binary standard COM. [4]

The OPC specification includes Data Access, Alarms &
Events, Batch, Historical Data Access and OPC XML
specifications. The most widely used is the Data Access
(DA) specification. This paper mainly covers issues related
to data access specification.

As mentioned, OPC specification is build on COM. A
DA OPC client can use either a custom interface or an
optional automation interface. Figure 1 illustrates the
situation.

OPC Automation

 Interface

OPC Custom Interface

Local or Remote
OPC Server

(Shared by many clients)

Server Data Cache

Physical
Device/

Data

OPC Automation
Wrapper

VB
Application

C++
Application

Figure 1. Typical OPC architecture [3]

The data access specification consists of two main
objects: the OPC server and the OPC group object (Figures
2-3). Every OPC client creates its own OPC server object,

which can contain several group objects. The group holds
items that the client wants to observe or manipulate. Items
are created when the client wants to observe or manipulate a
specific variable in the device. Every item has an item ID,
which is unique within the OPC server. Every variable can
be a member of several groups. A unique item id is used
when creating an item. However, read and write operations
are done with the help of an OPC server generated group-
specific server handle and an OPC client generated client
handle. Because the OPC server decides which item handles
it provides to the client, these handles can be used to provide
constant time access to each item in the database of the OPC
server.

IUnknown

IOPCItemMgt

IOPCGroupStateMgt

[IOPCPublicGroupStateMgt]

IOPCSyncIO

IOPCASyncIO2

IConnectionPointContainer

[IOPCASyncIO] old

[IDataObject] old

Standard
OPC Group

Object

Figure 2. Standard OPC group object [3]

IOPCCommon

IOPCServer

[IOPCServerPublicGroups]

[IOPCBrowseServerAddressSpace]

[IPersistFile]

IConnectionPointContainer

IUnknown

Standard
OPC Server

Object

Figure 3. Standard OPC server object [3]

CONNECTING PROCESS SIMULATOR AND
DISTRIBUTED CONTROL SYSTEM

One of the most interesting uses of the OPC data access
specification is making a connection between a dynamic
process simulator and a distributed control system. This kind
of combination can be used for operator training and
automation design and testing purposes [1,2].

If two or more applications exposing OPC interfaces
have to communicate with each other, a cross connector
application can be used to connect the OPC servers. Figure 4
illustrates the situation.

 Process
 Simulator
 (exe)

DCS

OPC Server 1
 (exe)

Distributed
communication.
Protocol defined by

process simulator

Communication
between OPC Servers
can be distributed

 Cross

 Connector
 (exe)

OPC Server 2
 (exe)

Figure 4. Current architecture for connecting a DCS and a
dynamic process simulator

The current OPC server implementation for Apros is a
stand-alone application. This kind of approach, where the
OPC server uses a native socket-based communication to
contact a database of a device, is widely employed. The
server implementation can adopt the benefits of an existing
legacy communication protocol. However, this kind of
architecture means that extra components have to be
introduced even when only two devices are connected. One
benefit can be that, when functionality of the device is
distributed, the same OPC server can contact all the required
devices, thus hiding the distributed nature of the system.

Process
Simulator
 (exe)

DCS

OPC Server 2

Cross Connector
 (exe)

OPC KIT (dll)

Front (dll)

Integrating OPC

Server to the same

process than simulator

Figure 5. Integrating OPC server into the simulator

A data access OPC server implementation for more
compact data sources, like a dynamic process simulator in
our case, can be integrated into the same process as the
actual data source. This can lead considerably more effective
data exchange. Figure 5 describes the new architecture
where the OPC server of the simulator consists of two
dynamically linked libraries. Next section will consider more
detailed information about the design principles of the new
architectural approach.

One possibility to simplify a connection between two
OPC servers is to implement cross-connector functionality
directly at either end of the communication. However OPC
specification does not define a standard OPC client. This
means that the embedded cross connector has to be
configured in a vendor-specific way (Figure 6).

 Process
Simulator (exe)

DCS

OPC Server

 Cross

Connector (dll)

Front (dll)

Moving cross
connector functionality
to either application

Figure 6. Integrating cross connector application into the
process simulator

One architectural approach to the OPC server
implementation is to use an existing communication protocol
of a legacy system and implement the OPC server as an in-
process server. However this may not be the most elegant
way and cannot be as efficient as the integrated solution
(Figure 7).

Legacy

Application

In-Process OPC Server of
DCS (dll)

OPC Client (exe)

Client links to the
applications OPC-
Server. Communication
between OPC Server
and application
is done via applications
protocol.

Figure 7. In-process OPC server communicating with an
existing protocol

MAIN DESIGN PRINCIPLES
The most important criterion for new OPC server, based

on the architecture illustrated in Figure 5, was efficient data
exchange. The simulation software is a rather old program
and can be considered as a legacy system. This was one of
the main reasons why the OPC server design consists of two
libraries (Figure 8). OPC Kit I/O library contains all OPC
specific code. Between I/O libraries and simulator is Front
library. When the simulator is used on a platform other than
Windows, other I/O libraries can be built on top of the Front.
Also the integrated cross connector I/O library can be built
on top of the Front. The interface between the Front and I/O
libraries was designed to be simple and not to include OPC-
like generality and OPC specialties.

Front (dll)

Process simulator (exe)

Kit (dll)Cross (dll)
Connector

Figure 8. New OPC server design

If new simulation engines are built, they can implement
the general purpose C interface between the Front and I/O
libraries, and reap the benefits of the OPC Kit without any
extra work.

The Front component can be used to make variable
mappings to higher level variables and an intelligent Front
component can map closely related variables for example to
vectors. OPC standard and the Kit library support one-
dimensional vectors. However scalar items cannot be
mapped or collected dynamically to vectors through OPC
interface.

The most efficient OPC server implementation avoids
any extra data caching. Using an extra component between
I/O libraries and device does not necessarily mean that the
data have to be copied to the Front. If the data types of the
target simulator are identical to the data type definitions in
the Front-Kit interface, references to the data can be
forwarded directly to the Kit. This kind of implementation
uses the Front as a stateless component that only controls the
data exchange. If the data types cannot be mapped one-to-
one, the data have to be copied and converted to another
format. If a more robust design is essential, access to the

database of the simulation server can be restricted to the
Front. However, this is done at the cost of efficiency.

MEASURING THE PERFORMANCE
Performance measurements were made with a laptop PC
(500MHz Mobile Pentium III and 320-MB RAM). The
operating system was Windows NT 4 Workstation with
service pack 6. In all tests OPC server was connected from
different process in the same machine. DCOM performance
was not measured. Data exchange is a highly CPU-intensive
task. This suggests that, in the near future, the performance
of data-transfer applications will be significantly improved.

In order to illustrate how the enhanced performance of
processors will affect the throughput of the OPC server, the
performance values achieved with a PIII 500MHz are
compared with the values achieved with an AMD Athlon
1.2GHz and 256-MB RAM. However, the operating system
was Windows 2000.

The performance of an OPC server often depends of the
underlaying device-connection more than raw OPC.
Chisholm has discussed OPC performance without any real
system behind [5].

In typical process simulation case it is more important to
achieve the biggest throughput possible rather than very fast
responses. Event based communication, which is
implemented with connection points according to the data
access 2 specification, is suitable for this purpose. The client
subscribes a set of items and determines the frequency
needed. In following tests all double items were
continuously changing and the requested frequency was
200ms. Table 1 summarizes the results. The complexity of
the algorithm used in event based data change is linear O(N).
The OPC client used in test did nothing with the received
values. The first column makes the difference between old

and new implementations. The fourth column shows the
CPU load of the OPC server. CPU Simulator shows how
much resource has been used to the background simulation.

Next results consider writing to the database of the
simulation engine. The most efficient and the simplest way
for manipulating the database is through the synchronous
write. Performance metrics (Table 2) was achieved by
simply measuring the time consumed in IOPCSyncIO-
>Write function. Tests were made for the OPC Server based
on the new architectural approach. The complexity of the
write operation is O(N).

In the previous sections, the concept of connecting two
or more devices with a cross-connector application was
introduced. We used a test case in which two process
simulators were connected with existing cross-connector
software. Figure 9 shows the architecture.

Table 2. Performance of synchronous write

In order to keep the impact of the simulation time as low
as possible, sine waves were used to generate continuously
changing items. The first simulator simulated sine signals,

Processor Items CPU % servr CPU % client CPU % proc. CPU %
priv. user tot. priv. user tot. priv. user tot. simulator

old PIII 500MHz 5000 1 41 42 1 4 5 3 49 52 5
old PIII 500MHz 8000 1 70 71 1 5 6 6 80 86 5
new PIII 500MHz 5000 1 9 10 1 4 6 2 13 15 *
new PIII 500MHz 10000 1 19 20 1 5 6 3 24 27 *
new PIII 500MHz 30000 2 46 48 10 13 23 26 59 85 *
new AMD 1.2GHz 5000 0.1 5 5 0 0.1 0.1 1 5 6 *
new AMD 1.2GHz 10000 1 9 10 1 4 5 7 13 20 *
new AMD 1.2GHz 30000 1 33 34 5 10 15 13 43 56 *
new AMD 1.2GHz 50000 2 56 58 10 14 24 26 70 96 *

Table 1. Performance of event based data exchange 2. * denotes that the processor
time consumed for simulation is included in CPU server column. This is a case
when OPC server is integrated into simulation software. CPU times consumed are
divided into privileged, user and total time. proc. denotes processor.

Processor Items Time (ms)
new PIII 500MHz 1 1.3
new PIII 500MHz 1000 2.8
new PIII 500MHz 10000 29
new PIII 500MHz 50000 160
new AMD 1.2GHz 1 1.5
new AMD 1.2GHz 1000 2.3
new AMD 1.2GHz 10000 27
new AMD 1.2GHz 50000 120

Cross Connector
Application (EXE)

Process
Simulator 1

 (EXE)

Process
Simulator 2

 (EXE)

Figure 9. Connecting two process simulator with a cross
connector application

which were sent with event-based data exchange to the
cross-connector application. The frequency of the data
exchange was 200 ms. The CPU resources used in the first
simulator, which was used to simulate sine waves, were
about 5%. The cross connector was writing all the values to
the other simulator. The results show the impact of the non-
optimized cross-connector, which clearly becomes the
bottleneck of the system. Coding the functionality of the
cross connector on top of the Front library, as discussed
earlier, can increase throughput considerably.

The result shows how important it is to optimize all
parts of the system when maximum performance is required.
This can be done most efficiently by reducing the number of
components in the overall system.

CONCLUSIONS
OPC data-access based communication has earlier been

used for connecting a DCS and a dynamic process simulator
in small- to medium-sized projects. A better performance
can help to take the step towards larger scale use. Using
standard means of communication can reduce the costs of
system integration. Although a better performance can still

be achieved using a block-based data transfer, it seldom
offers such a flexible and easy-to-use behavior as OPC.

Reducing complexities of the OPC server design and
integrating server functionality into the same process with
simulation software, would provide the speedup needed for
large-scale use of dynamic simulation. When high
performance is required in the combination of a DCS and a
dynamic process simulator, both OPC servers must be
optimized.

The amount of simulation aided automation deliveries in
the process industry will grow in the future. Tendency
towards open architectures is continuing and communication
protocols are developing. Tools for the simulation-aided
working methods are evolving into a more scalable and
effective form for the benefit of the end-user.

REFERENCES
[1] Lappalainen, Jari; Tuuri, Sami; Karhela, Tommi;
Hankimäki, Janne; Tervola, Pekka; Peltonen, Soile;
Leinonen, Toivo; Karppanen, Erkki; Rinne, Jarmo; Juslin,
Kaj. “Direct Connection of Simulator and DCS Enhances
Testing and Operator Training”. Proceedings of TAPPI
1999 Engineering / Process & Product Quality Conference,
Hilton Anaheim, Anaheim CA, September 12-16 1999, p.
495-502

[2] Rinta-Valkama, Jarno; Välisuo, Martti; Karhela, Tommi;
Laakso, Pasi; Paljakka, Matti. “Simulation Aided Process
Automation Testing”. IFAC's Conference on Computer
Aided Control System Design (CACSD), University of
Salford, UK, September 11 - 13 2000.

[3] OPC Foundation, “OPC Data Access Custom Interface
Specification”, 2.04 ed., September, 2000.

[4] Microsoft Corporation, “The Component Object Model
Specification”, 0.9 ed., October 1995.

[5] Chisholm, Al, “DCOM, OPC and Performance Issues”
Tech. Report, OPC Foundation, March, 1998.

Table 3. Performance of two simulators connected with a cross-
connector application. Requested frequency was 200 ms.

Processor Items CPU % CPU % CPU % proc.
C-Con servers priv. user total

old PIII 500MHz 2500 6 45 7 50 57
new PIII 500MHz 2500 6 12 8 17 25
new PIII 500MHz 5000 19 17 10 30 40
new PIII 500MHz 9000 38 27 21 59 80
new AMD 1.2GHz 9000 22 24 9 41 50
new AMD 1.2GHz 11000 39 37 17 64 81

